Technology

present software technlogies

Hologram Basics:





There are a few basic things to learn about holograms.
First, I will briefly explain the two theories behind the hologram.
1) the wave interference pattern, and 2) the coherency of light.

Then, I will describe how holograms store and project information.
1. Interference Pattern:

    The hologram is based upon Nobel Prize winner Dennis Gabor's theory concerning interference patterns. Gabor theorized in 1947 that each crest of the wave pattern contains the whole information of its original source, and that this information could be stored on film and reproduced. This is why it is called a hologram.

    hologram diagram A pebble, dropped in a still pond, is the most basic example used to describe the wave interference process. If you drop a pebble into a pond, it creates an infinitely expanding circular wave pattern. If you drop two pebbles into a pond the waves' crests would eventually meet. The intersecting points of the waves' crests are called the points of interference. The interference of two or more waves will carry the whole information about all the waves.
2. Coherent Light:

                    Gabor recorded several images holographically, but wasn't successful at producing a clear image because he could only use forms of incoherent, white light.                                                                                                               An example of incoherent light would be if you were watching cars coming out of a tunnel, you would likely see many different models and types of cars, traveling at different speeds and at different lengths apart. Now, suppose you started seeing the same model and type of cars, all heading down the highway at the same speed, and the same distance apart. This would be an example of coherent light. Holograms need coherent light to record or playback the image clearly.                                                                                                                                          
    The L.A.S.E.R. (Light Amplified by Stimulated Emission of Radiation) was invented to produce coherent light. Incoherent light travels in different frequencies and in different phases. Coherent light travels in the same frequency and in the same phase. (100% coherent light is rare) It is important to use light which is coherent because the information is carried on the crest of each wave. The more points of intersection, the more information.
                                                                                                                                                                                                                                                                                                                              3. Storing Information:

    Unlike a camera, which has only one point of light reference, a hologram has two or more points of light references. The intersection points of the two light waves contain the wholeinformation of both reference points. A LASER is used as the light source so the waves are coherent.





    A LASER is projected onto a partially silvered mirror called a beam splitter. This mirror splits the original beam into two beams. One beam travels through a lens that diffuses the light onto the object being recorded. This light, called the object beam, is reflected off the object onto the film plate. The second beam is bounced off a mirror and then through a lens that diffuses the light directly onto the film. This beam is called the reference beam. The same light source needs to be used for both beam so the waves will have perfect intersection points.



             

    To add motion (time) to your holograph, you would turn the object, or move the mirrors and lenses, and shoot again onto the same film. The original waves recorded on the film, will intersect with the waves from the new perspective.


                                       

TCP/IP is a set of protocols developed to allow cooperating computers to share resources across a network. It was developed by a community of researchers centered around the ARPAnet. Certainly the ARPAnet is the best-known TCP/IP network. However as of June, 87, at least 130 different vendors had products that support TCP/IP, and thousands of networks of all kinds use it.

The most accurate name for the set of protocols we are describing is the "Internet protocol suite". TCP and IP are two of the protocols in this suite. (They will be described below.) Because TCP and IP are the best known of the protocols, it has become common to use the term TCP/IP or IP/TCP to refer to the whole family. It is probably not worth fighting this habit. However this can lead to some oddities. For example, I find myself talking about NFS as being based on TCP/IP, even though it doesn't use TCP at all. (It does use IP. But it uses an alternative protocol, UDP, instead of TCP. All of this alphabet soup will be unscrambled in the following pages.)
The Internet is a collection of networks, including the Arpanet, NSFnet, regional networks such as NYsernet, local networks at a number of University and research institutions, and a number of military networks. The term "Internet" applies to this entire set of networks.

TCP/IP is a layered set of protocols. In order to understand what this means, it is useful to look at an example. A typical situation is sending mail. First, there is a protocol for mail. This defines a set of commands which one machine sends to another, e.g. commands to specify who the sender of the message is, who it is being sent to, and then the text of the message. However this protocol assumes that there is a way to communicate reliably between the two computers.

Mail, like other application protocols, simply defines a set of commands and messages to be sent. It is designed to be used together with TCP and IP. TCP is responsible for making sure that the commands get through to the other end.                                      It keeps track of what is sent, and retransmitts anything that did not get through. If any message is too large for one datagram, e.g. the text of the mail, TCP will split it up into several datagrams, and make sure that they all arrive correctly. Since these functions are needed for many applications, they are put together into a separate protocol, rather than being part 5 of the specifications for sending mail. 



Definition:
Fourth generation wireless system is a packet switched wireless system with wide area coverage and high throughput. It is designed to be cost effective and to provide high spectral efficiency . The 4g wireless uses Orthogonal Frequency Division Multiplexing (OFDM), Ultra Wide Radio Band (UWB),and Millimeter wireless. Data rate of 20mbps is employed. Mobile speed will be up to 200km/hr.The high performance is achieved by the use of long term channel prediction, in both time and frequency, scheduling among users and smart antennas combined with adaptive modulation and power control. Frequency band is 2-8 GHz. it gives the ability for world wide roaming to access cell anywhere.

Wireless mobile communications systems are uniquely identified by "generation designations. Introduced in the early 1980s, first generation (1G) systems were marked by analog frequency modulation and used primarily for voice communications. Second generation (2G) wireless communications systems, which made their appearance in the late 1980s, were also used mainly for voice transmission and reception The wireless system in widespread use today goes by the name of 2.5G-an "in between " service that serves as a stepping stone to 3G. Whereby 2G communications is generally associated with Global System for Mobile (GSM) service, 2.5G is usually identified as being "fueled " by General Packet Radio Services (GPRS) along with GSM. In 3G systems,  making their appearance in late 2002 and in 2003, are designed for voice and paging services, as well as interactive media use such as teleconferencing, Internet access, and other services. The problem with 3G wireless systems is bandwidth-these systems provide only WAN coverage ranging from 144 kbps (for vehicle mobility applications) to 2 Mbps (for indoor static applications). Segue to 4G, the "next dimension " of wireless communication. The 4g wireless uses Orthogonal Frequency Division Multiplexing (OFDM), Ultra Wide Radio Band (UWB), and Millimeter wireless and smart antenna. Data rate of 20mbps is employed. Mobile speed will be up to 200km/hr.Frequency band is 2 �]8 GHz. it gives the ability for world wide roaming to access cell anywhere.

Features:
o Support for interactive multimedia, voice, streaming video, Internet, and other broadband services
o IP based mobile system
o High speed, high capacity, and low cost per bit
o Global access, service portability, and scalable mobile services
o Seamless switching, and a variety of Quality of Service driven services
o Better scheduling and call admission control techniques
o Ad hoc and multi hop networks (the strict delay requirements of voice make multi hop network service a difficult problem)
o Better spectral efficiency
o Seamless network of multiple protocols and air interfaces (since 4G will be all �]IP, look for 4G systems to be compatible with all common network technologies, including802.11, WCDMA, Blue tooth, and Hyper LAN).
o An infrastructure to handle pre existing 3G systems along with other wireless technologies, some of which  are concurently developed.

Custom Search

visitors in world